01 Force and Motion II
02 Pressure
03 Electricity
04 Electromagnetism
05 Electronics
06 Nuclear Physics
07 Quantum Physics

7.3.3 Generating Photoelectric Current in Photoelectric Circuit

Example

If the work function for gold is \(8.155 \times 10^{-20} J\), what is the minimum frequency of light irradiated on the surface of gold that will emit photoelectrons?
Solution
Minimum frequency = threshold frequency

Work function,
\[
\begin{aligned}
W & =h \int_0 \\
\int_0 & =\frac{W}{h} \\
& =\frac{8.155 \times 10^{-20}}{6.63 \times 10^{-34}} \\
& =1.23 \times 10^{14} Hz
\end{aligned}
\]

Example

The graph below shows the variation of maximum kinetic energy of a photoelectron emitted from a metal surface with the frequency of light incident on the metal surface.

Determine the work function and threshold frequency of the metal.

Solution
\[
\begin{aligned}
E= & W+K_{\max } \\
W= & E-K_{\max } \\
= & h f-K_{\max } \\
= & \left(6.63 \times 10^{-34}\right)\left(12 \times 10^{14}\right) \\
& -\left(5.0 \times 10^{-20}\right) \\
= & 7.456 \times 10^{-19} J
\end{aligned}
\]

From,
\[
\begin{aligned}
W & =h \int_0 \\
f_0 & =\frac{W}{h} \\
& =\frac{7.456 \times 10^{-19}}{6.63 \times 10^{-34}} \\
& =1.125 \times 10^{15} Hz
\end{aligned}
\]

Example

A metal surface is illuminated by photons of energy \(4.0 eV\) and emits photoelectrons of maximum velocity \(2.0 \times 10^5 m s ^{-1}\). What is the maximum wavelength of the incident light wave that will emit electrons from the metal surface?
Solution
Energy of photon,
\[
\begin{aligned}
E & =4.0 eV \\
& =4.0\left(1.6 \times 10^{-19}\right) \\
& =6.4 \times 10^{-19} J
\end{aligned}
\]Maximum kinetic energy,
\[
\begin{aligned}
K_{\max } & =\frac{1}{2} m v_{\max }^2 \\
& =\frac{1}{2}\left(9.11 \times 10^{-31}\right)\left(2.0 \times 10^5\right)^2 \\
& =1.82 \times 10^{-20} J \\
E & =W+K_{\max } \\
W & =E-K_{\max } \\
& =\left(6.4 \times 10^{-19}\right)-\left(1.82 \times 10^{-20}\right) \\
& =6.218 \times 10^{-19} J
\end{aligned}
\]

From,
\[
\begin{array}{l}
\text { From, } W=h f_0 \\
=\frac{h c}{\lambda_{\max }} \\
\begin{aligned}
\lambda_{\max } & =\frac{h c}{W} \\
= & \frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^8\right)}{ W } \\
= & \frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^8\right)}{6.218 \times 10^{-19}} \\
= & 3.199 \times 10^{-7} m
\end{aligned}
\end{array}
\]

Example

Photoelectrons of maximum kinetic energy \(1.02 eV\) are emitted when a monochromatic light of wavelength \(550 nm\) is incident on a metal surface. The maximum kinetic energy becomes \(1.35 eV\) when a light of \(480 nm\) is used.
(a) Deduce the value of Planck’s constant.
(b) Determine the work function of the metal in units of \(eV\).
Solution
(a)
\[
\begin{array}{l}
E=W+K_{\max } \\
\frac{h c}{\lambda}=W+K_{\max } \\
\frac{h\left(3 \times 10^8\right)}{550 \times 10^{-9}}=W+1.02 eV \\
\frac{h\left(3 \times 10^8\right)}{480 \times 10^{-9}}=W+1.35 eV
\end{array}
\]
(2) – (1):
\[
\begin{array}{l}
\frac{h\left(3 \times 10^8\right)}{10^{-9}}\left(\frac{1}{480}-\frac{1}{550}\right) \\
=(1.35-1.02) eV \\
h=\frac{0.33 eV }{7.955 \times 10^{13}}
\end{array}
\]Converting energy in \(eV\) to \(J\) :
\[
\begin{aligned}
h & =\frac{(0.33)\left(1.6 \times 10^{-19}\right)}{7.955 \times 10^{13}} \\
& =6.64 \times 10^{-34} J s ^{-1} \ldots
\end{aligned}
\]
(b) (3) into (1):
\[
\begin{array}{l}
\frac{\left(6.64 \times 10^{-34}\right)\left(3 \times 10^8\right)}{550 \times 10^{-9}} \\
= W +1.02 eV
\end{array}
\]

Converting energy in \(J\) to \(eV\),
\[
\begin{array}{l}
\frac{\left(6.64 \times 10^{-34}\right)\left(3 \times 10^8\right)}{\left(550 \times 10^{-9}\right)\left(1.6 \times 10^{-19}\right)} \\
=W+1.02 eV \\
2.26 eV = W +1.02 eV
\end{array}
\]

Therefore, work function, \(W=1.24 eV\)