Example
The mass of the Earth is \(5.97 \times\) \(10^{24} kg\) and the radius of the Earth is \(6.37 \times 10^6 m\). Calculate the gravitational acceleration at the surface of the Earth.
\[
\left[G=6.67 \times 10^{-11} N m ^2 kg ^{-2}\right]
\]
Solution
\[
\begin{array}{l}
M=5.97 \times 10^{24} kg , \\
R=6.37 \times 10^6 m , g=?
\end{array}
\]
Using formula \(g=\frac{G M}{r^2}\)
\[
\begin{aligned}
& \begin{array}{l}
\left(6.67 \times 10^{-11}\right) \times \\
\left(5.97 \times 10^{24}\right)
\end{array} \\
= & \frac{9.81 m s ^{-2}}{\left(6.37 \times 10^6\right)^2}
\end{aligned}
\]
Example
A satellite is orbiting the Earth at an altitude of \(460 km\). What is its gravitational acceleration at this altitude? [G \(=6.67 \times 10^{-11} N m ^2 kg ^{-2}\), mass of the Earth \(=5.97 \times 10^{24} kg\), radius of the Earth \(=6.37 \times 10^6 m\) ]
Solution
\[
\begin{array}{l}
\text { Height of orbit, } \begin{aligned}
h & =460 km \\
& =460000 m
\end{aligned} \\
\begin{aligned}
M & =5.97 \times 10^{24} kg , r=R+h, g=? \\
g & =\frac{G M}{r^2} \\
& =\frac{\left(6.67 \times 10^{-11}\right)\left(5.97 \times 10^{24}\right)}{\left[\left(6.37 \times 10^6\right)+460000\right]^2} \\
& =8.53 m s ^{-2}
\end{aligned}
\end{array}
\]