\[
\frac{T_1^2}{r_1^3}=\frac{T_2^2}{r_2^3}=\frac{T_3^2}{r_3{ }^3}
\]
Example
The average orbital distance of Mars is 1.52 times the average orbital distance of the Earth. Knowing that the Earth orbits the Sun in approximately 365 days, use Kepler’s Third Law to predict the time for Mars to orbit the Sun. [Given \(R_{\text {Mars }}=1.52 R_{\text {Earth }}\) and \(T_{\text {Earth }}\) \(=365\) days \(]\)
Solution
Use Kepler’s Third Law to relate the ratio of the period squared to the ratio of radius cubed.
\[
\begin{aligned}
\frac{\left(T_{\text {Mars }}\right)^2}{\left(T_{\text {Earth }}\right)^2} & =\frac{\left(R_{\text {Mars }}\right)^3}{\left(R_{\text {Earth }}\right)^3} \\
\left(T_{\text {Mars }}\right)^2 & =\left(T_{\text {Earth }}\right)^2 \times \frac{\left(R_{\text {Mars }}\right)^3}{\left(R_{\text {Earth }}\right)^3} \\
& =(365 \text { days })^2 \times(1.52)^3 \\
T_{\text {Mars }} & =684 \text { days }
\end{aligned}
\]
Note: \(\frac{R_{\text {Mars }}}{R_{\text {Earth }}}\) ratio is 1.52
Example
Given 2 satellites A and B are orbitting a planet. Satellite A takes 9 days to complete one full orbit around a planet, at a distance of 5.0 units. Satellite B orbits it in 7 days. How far is it from the planet?
Solution
\(T_A=9\) days, \(r_A=5\) units, \(T_B=7\) days, \(r_{ B }=\) ?
Using formula
\[
\begin{aligned}
\frac{\left(T_A^2\right)}{\left(r_A^3\right)} & =\frac{\left(T_B^2\right)}{\left(r_B^3\right)} \\
\frac{9^2}{5^3} & =\frac{7^2}{r_B^3} \\
r_B & =4.22 \text { units }
\end{aligned}
\]