Example
Given \(G=6.67 \times 10^{-11} N m ^2 kg ^{-2}\), mass of the Earth \(=5.97 \times 10^{24} kg\) and radius of the Earth \(=6.37 \times 10^6 m\).
(a) Calculate the escape velocity from the Earth.
(b) Calculate the radius of a planet with an escape velocity of 6.2 \(m s ^{-1}\). Assume the planet has the same average density as the Earth, \(5500 kg m ^{-3}\).
Solution
(a)
\[
\begin{array}{l}
M=5.97 \times 10^{24} kg , \\
R=6.37 \times 10^6 m , v=?
\end{array}
\]
Using escape velocity
\[
\begin{array}{l}
v=\sqrt{\frac{2 G M}{R}} \\
=\sqrt{\frac{\begin{array}{c}
2\left(6.67 \times 10^{-11}\right)(5.97 \times \\
\left.10^{24}\right)
\end{array}}{6.37 \times 10^6}} \\
=1.12 \times 10^4 ms ^{-1} \\
\end{array}
\]
(b) Escape velocity, \(v=\sqrt{\frac{2 G M}{R}}\)
Therefore, \(R=\frac{2 G M}{v^2}\)
\[
=\frac{2 G(4 / 3) \pi R^3 \rho}{v^2}
\]
Radius of planet, \(R\)
\[
\begin{array}{l}
=\sqrt{\frac{v^2}{2 G\left(\frac{4}{3}\right) \pi p}} \\
=\sqrt{\frac{(6.2)^2}{2\left(6.67 \times 10^{-11}\right) \times 1.33 \times}} \\
=3541 m
\end{array}
\]