01 Measurement
02 Force and Motion 1
03 Gravitation
04 Heat
05 Waves
06 Light and Optics
1 of 3

3.3.1 Man Made Satellite

  1. To launch a satellite into the orbit, the satellite must have a suitable speed to move at a certain height above the Earth.
  2. The satellite in the orbit experiences a centripetal force which is equal to the gravitational force. The speed of satellite can be determined using the formulae below.
    Gravitational centripetal force
    \[
    \begin{array}{r}
    \frac{G M m}{r^2}=\frac{m v^2}{r} \\
    v=\sqrt{\frac{G M}{r}}
    \end{array}
    \]
  3. The speed required is known as linear speed.
    Thus, linear speed,
    \[
    \begin{array}{l}
    \begin{array}{l}
    v=\sqrt{\frac{G M}{R+h}} \\
    \text { where } r=\text { radius of orbit } \\
    =R+h
    \end{array}
    \end{array}
    \]
    \(R=\) radius of the Earth
    \(h=\) height of satellite
  4. If the linear speed, \(v<\sqrt{\frac{G M}{r}}\)
    (a) and the magnitude is too low, it will fall towards the Earth.
    (b) and the magnitude is not too low, it will fall to a lower orbit.

Example

The International Space Station orbits at an altitude of \(400 km\) above the surface of the Earth. What is the space station’s linear speed?
IG \(=6.67 \times 10^{-11} N m ^2 kg ^{-2}\), mass of the Earth \(=6.0 \times 10^{2+} kg\), radius o[ the Earth \(=6.37 \times 10^6 m\) ]

Solution
\[
\begin{array}{l}
M=6.0 \times 10^{24} kg , G=6.67 \times 10^{-11} \\
N m ^2 kg ^{-2}, v=\text { ? } \\
\left.r=R+h=\left(6.37 \times 10^6\right)+(400) \times 10^3\right) \\
=6370000+400000 \\
=6770000 m \\
\end{array}
\]
Using formula \(v=\sqrt{\frac{G M}{r}}\)
\[
\begin{array}{l}
=\sqrt{\frac{\left(6.67 \times 10^{-11}\right) \times}{\left.677010^{24}\right)}} \\
=7669 m s ^{-1}
\end{array}
\]
The linear speed of the International Space Station is \(7669 m s ^{-1}\).

Example

A satellite is orbiting the Earth with a linear speed of \(3200 m s ^{-1}\).
What is the orbital radius?
\(G=6.67 \times 10^{-11} N m ^2 kg ^{-2}\),
mass of the Earth \(=6.0 \times 10^{24} kg\),
radius of the Earth \(\left.=6.37 \times 10^6 m \right]\)

Solution
\[
\begin{array}{l}
v=3200 m s ^{-1}, \\
M=6.0 \times 10^{24} kg , \\
\begin{array}{l}
G=6.67 \times 10^{-11} N m ^2 kg ^{-2}, \\
r=? \\
\text { Using } v=\sqrt{\frac{G M}{r}} \\
r=\frac{G M}{v^2} \\
=\frac{\left(6.67 \times 10^{-11}\right)\left(5.97 \times 10^{24}\right)}{(3200)^2} \\
=3.897 \times 10^7 m
\end{array}
\end{array}
\]
The orbital radius for this satellite is \(3.897 \times 10^7 m\).

Geostationary and Non-geostationary Satellites

  1. A geostationary satellite is a satellite that appears to be located at a fixed point in space. Transmitters and receivers on the Earth can be pointed at them anytime without adjustments.
  2. A non-geostationary satellite is one where its position relative to the Earth is not fixed.
  3. Differences between a geostationary satellite and a non-geostationary satellite are given in Table below.

\[
\begin{array}{|l|l|l|}
\hline \text { Characteristic } & \text { Geostationary satellite } & {\begin{array}{c}
\text { Non-geostationary } \\
\text { satellite }
\end{array}} \\
\hline \text { Location } & \begin{array}{l}
\text { – The orbit must be } \\
\text { above the equator in } \\
\text { one plane, known as } \\
\text { Geostationary Earth } \\
\text { Orbit } \\
\text { – Above the same } \\
\text { geographical location }
\end{array} & \begin{array}{l}
\text { – Below or above } \\
\text { Geostationary Earth } \\
\text { Orbit } \\
– \text { Above different } \\
\text { geographical locations }
\end{array} \\
\hline \begin{array}{l}
\text { Direction of } \\
\text { motion }
\end{array} & \begin{array}{l}
\text { Same direction as } \\
\text { Earth’s rotation }
\end{array} & \begin{array}{l}
\text { Not the same direction as } \\
\text { Earth’s rotation }
\end{array} \\
\hline \text { Orbital period } & \text { The period is 24 hours } & \begin{array}{l}
\text { The period of orbit is less } \\
\text { or more than 24 hours }
\end{array} \\
\hline \text { Uses } & \text { Telecommunication } & \text { GPS, weather forecast } \\
\hline
\end{array}
\]

Example

Find the orbital radius of a geostationary satellite. What height is this satellite above the Earth’s surface? \(\left[G=6.67 \times 10^{-11} N m ^2 kg ^{-2}\right.\), mass of the Earth \(=6.0 \times 10^{24} kg\), radius of the Earth \(=6.37 \times 10^6 m\) ]

Solution
Using equation \(T^2=\frac{4 \pi^2 r^3}{G M}\)
\[
\begin{aligned}
r^3 & =\frac{G M T^2}{4 \pi^2} \\
& =\frac{\left(6.67 \times 10^{-11}\right)\left(6.0 \times 10^{24}\right)}{\times(24 \times 60 \times 60)^2} \\
& =7.567 \times 10^2 \\
r & =4.23 \times 10^7 m
\end{aligned}
\]
Height above Earth’s surface,
\[
\begin{aligned}
h & =r-R \\
& =\left(4.23 \times 10^7\right)-\left(6.37 \times 10^6\right) \\
& =3.59 \times 10^7 m
\end{aligned}
\]

Example

A satellite is placed in an orbit around Jupiter. The orbital period is 10 hours. What is the orbital radius?
\[
\left[G=6.67 \times 10^{-11} N m kg ^{-2}\right. \text {, mass of Jupiter}  =1.9 \times 10^{27} kg ] \]

Solution
\[
\begin{array}{l}
G=6.67 \times 10^{-11} N m kg ^{-2} \text {, } \\
M=1.9 \times 10^{27} kg \\
\text { Using formula, } r^3=\frac{G M T^2}{4 \pi^2} \\
\left(6.67 \times 10^{-11}\right)\left(1.9 \times 10^{27}\right) \\
=\frac{\times(10 \times 60 \times 60)^2}{4 \pi^2} \\
=4.160 \times 10^{24} m ^3 \\
\end{array}
\]
Therefore, \(r=1.61 \times 10^8 m\)

aa